Системный анализ понятие функции

Функция в переводе с лат. означает «исполнение» — это способ проявления активности системы, устойчивые активные взаимоотношения вещей, при которых изменения одних объектов приводят к изменениям других. Понятие употребляется в самых различных значениях. Оно может означать способность к деятельности и саму деятельность, роль, свойство, значение, задачу, зависимость одной величины от другой и т.д.

Под функцией системы обычно понимают:

  • действие системы, ее реакция на среду;
  • множество состояний выходов системы;
  • при описательном или дескриптивном подходе к функции она выступает как свойство системы, которое развертывается в динамике;
  • как процесс достижения цели системой;
  • как согласованные между элементами действия в аспекте реализации системы как целого;
  • траекторию движения системы, которая может описываться математической зависимостью, формулой, связывающей зависимые и независимые переменные системы.

В теории систем понятие «функция» занимает очень важное место. Функции выражают поведение системы, причем это поведение при обозначении его функцией становится упорядоченным, закономерным и организованным. Поэтому функции представляют собой направления активности системы, которая взаимодействует со средой. Функция — это, прежде всего, проявление свойств системы. Можно согласиться с В. Г. Афанасьевым, который пишет: « Функция системы является проявлением свойств, качеств системы во взаимодействии с другими объектами системного и несистемного порядка, выражением определенной относительно устойчивой реакции системы на изменение ее внутреннего состояния и ее внешней среды, реакция на возмущающие воздействия изнутри и извне, своеобразным специфическим способом поведения системы, средством разрешения постоянного противоречия между системой и средой, ее окружением. Функции системы как целого определяют функции, которые выполняет в системе каждый из ее компонентов» [2, с. 133].

Ключевым положением теории систем, создающим условия для так называемого структурно-функционального анализа, является положение о том, что между структурой системы и ее функциями существует вполне определенная закономерная взаимосвязь. Это метко подметил Ю. Г. Марков: «Функции, какова бы ни была их природа, можно реализовать лишь в структуре» [13, с. 19]. На это обращает внимание и В. Г. Афанасьев: «Функции присущи системе и ее компонентам, причем функции системы есть интегрированный результат функционирования образующих ее компонентов» [2, с. 131].

Немаловажным положением теории систем выступает положение о функциональной зависимости в системе, которое предопределяет основные направления функционального анализа. Оно достаточно четко сформулировано В. Г. Афанасьевым: « Функциональная зависимость имеет место между отдельными компонентами данной системы; между компонентами и системой в целом; между системой в целом и другой, более широкой системой, компонентом которой она сама является» [2, с. 133]. По сути функциональный анализ сводится к определению этих видов функциональных зависимостей, которые демонстрируют и объясняют активность системы.

Типология функций системы представляет собой многоаспектное образование. На первый взгляд кажется, что функции так многообразны, что не поддаются какой-то классификации. На самом деле их не так много. Иллюзию бесконечного множества видов создает множество систем, которые придают функциям индивидуальную неповторимость.

Так, по степени воздействия на внешнюю среду и по характеру взаимодействия с другими системами функции бывают: пассивные, обслуживающие, противостояния, поглощения, преобразования, адаптивные; по составу — простые и сложные; по характеру проявления — явные и латентные; по содержанию — целевые, ролевые, деятельные; по характеру временной детерминации — временные, постоянные; по отношению к системе — внешние, внутренние; по характеру действия — непрерывные и дискретные; по последствиям для системы — позитивные, нейтральные и дисфункции; по траектории реализации — линейные и нелинейные; по количеству переменных — с одной переменной и с несколькими переменными (табл. 14).

Основание классификации Функция
Тип Характеристика
Степень воздействия на внешнюю среду и характер взаимодействия с другими системами Пассивные Пассивное существование системы как материала для других систем
Обслуживающие Обслуживание системы более высокого порядка
Противостояния Противостояние другим системам
Поглощения Выживание, поглощение, экспансия других систем и среды
Преобразования Преобразование других систем и среды
Адаптивные Приспособление системы к окружающей среде
Состав функций Простые В них выделяются отдельные функциональные компоненты
Сложные Содержат несколько простых компонентов
Характер проявления Явные Проявляются открыто
Латентные (скрытые) Проявляются с течением времени, расходятся с провозглашаемыми целями участников деятельности
Содержание функций Целевые В основе ее цели, стоящие перед системой
Ролевые Роли, выполняемые системой
Деятельностные Направления деятельности системы
Характер временной детерминации Временные Выполняются системой эпизодически
Постоянные Выполняются системой постоянно
Положение в системе Внешние Ориентированы на реализацию целей системы, взаимодействие с внешней средой
Внутренние Регулируют процессы внутри системы
Характер действия Непрерывные Действуют непрерывно, постоянно
Дискретные Действуют прерывисто, дискретно
Последствия для системы Нейтральные Не вызывают ни позитивных, ни негативных последствий для системы
Конструктивные (позитивные) Вызывают положительные последствия для системы
Дисфункции Вызывают отрицательное содействие системе
Тип траектории Линейные Представляет собой линейную зависимость переменных
Нелинейные Представляют собой различные виды нелинейных зависимостей переменных
Количество переменных Одной переменной Свойственна одна переменная
Нескольких переменных Свойственны несколько переменных

Таблица 14 — Типология функций системы

Следует подчеркнуть, что каждая система родственна со всеми системами с точки зрения функций и одновременно индивидуально неповторима. Данная таблица может быть применена при построении функциональных описаний систем.

Особое внимание обратим на внутренние и внешние функции системы. Вопрос о взаимодействии и взаимообусловленности этих функций представляется одним из ключевых положений теории систем. Он объясняет практически все основные проблемы не только функционирования, но и развития систем. Наличие этих функций обусловлено тем, что для любой системы характерна внешняя и внутренняя среда, поэтому свойственны внутренние и внешние функции.

Внешние и внутренние функции

Внешние функции — это активные, направленные воздействия системы на окружающую среду для достижения поставленных целей. Внешние функции обеспечивают внешние результаты системы. Они представляют собой устойчивые реакции системы на среду и устойчивые связи системы со средой. Поэтому для них характерны:

  • устойчивость и стабильность, когда система постоянно проявляет себя;
  • направленность, т.е. функция обязательно на что-то направлена, предметна;
  • взаимодействие со средой, поскольку функция не сводится только к воздействию на среду;
  • активность и целенаправленность, ибо функционирование — проявление активности системы в достижении цели.

Внешние функции могут быть нескольких видов.

  • Преобразовательные функции свойственны для созидательных систем, которые преобразуют окружающую среду, приводят ее в соответствие со своей сущностью. Это характерно в целом ряде случаев для деятельности человека, который упорядочивает природный хаос, хотя одновременно увеличивает энтропийность некоторых природных систем.
  • Пассивные функции — пассивное существование системы как материала для других систем. Такое существование системы — кратковременный период времени, который чаще всего связан с кризисами системы. Его нельзя считать нефункциональным. Система все равно функциональна, поскольку отдает себя хаосу, окружающим системам.
  • Потребительские функции свойственны для систем, которые получают из окружающей среды вещество, энергию, информацию. Открытая система не может существовать без потребления вещества, энергии и информации из окружающей среды, что обеспечивает ее существование и развитие.
  • Функции поглощения — выживание поглощение, экспансия других систем и среды. Эти функции характеризуют систему как очень активное образование, которое не просто находится в состоянии спонтанного взаимодействия со средой, а активно поглощает из окружения системы и их элементы.
  • Адаптивные функции характерны для широкого спектра адаптивных систем, обладающих способностью приспосабливаться. Они обеспечивают согласование системы с ее окружением, взаимное изменение поведения.
  • Обслуживающие функции — обслуживание системы более высокого порядка. Это тот случай, когда система занимает определенное место в иерархии, что и предопределяет ее обслуживающую роль верхних уровней иерархии и получение услуг со стороны нижних уровней.

Функция системы — это ее свойство в динамике, приводящее к достижению цели, т.е. в процессе функционирования система меняет состояния. При этом она переходит из одного состояния в другое или сохраняет какое-либо состояние. Состояния изображаются в виде точек пространства состояний. Отсюда функционирование системы представляется в виде некоторой траектории в пространстве состояний.

Поскольку достижение цели или целевого состояния может быть обеспечено посредством движения по некоторым траекториям, возникает вопрос о предпочтительной или оптимальной траектории.

Оптимальным называется функционирование системы, при котором она удовлетворяет: во-первых, ограничениям, накладываемым внешней средой; во-вторых, критериям качества самой траектории.

Внутренние функции системы определяются тем, что выполнение системой внешней работы неизбежно приводит к мобилизации системы. В ней происходят различные корреляции целей, вещества, энергии, информации. Налаживание обмена с окружающей средой требует постоянного регулирования элементов, взаимосвязей между ними и т.п.

Поэтому под внутренней функцией следует понимать важнейшее условие внешнего функционирования, при котором проявление целого обеспечивается проявлением и существованием его частей, т. е. это способ взаимодействия частей внутри целого. Разновидности внутренних функций:

  • распорядительная, т.е. закрепление за элементами и подсистемами определенных действий;
  • координации и согласования, благодаря которым происходят совместные действия элементов;
  • субординации или соподчинения, предполагающие распределение между элементами координационных или субординационных отношений;
  • контролирующая, т.е. осуществляющая проверку соответствия действия определенной норме;
  • целеполагающая, т. е. определяющая цели функционирования и развития системы.

Обратим внимание на то, что реализация внутренних функций обеспечивается природой системы. Если это живой организм, то происходит его биологическая внутренняя саморегуляция. Если производственная организация, то в ней работают цели, мотивы, ценности, установки людей. Важнейшая роль внутренних функций заключается в том, что они обеспечивают необходимую для внешнего функционирования внутреннюю динамику системы.

Источник



Функции системного анализа

В ходе решения задач системного анализа сначала применяют декомпозицию, включающую следующие функции:

  1. Вычленение цели анализа и возможность его разбиения на перечень отдельных вопросов, требующих решения для систем и составляющих их элементов;
  2. Выделение анализируемой сложной системы из среды, отделение ее от внешних связей;
  3. Описание всех возможных внешних и внутренних влияний на систему;
  4. Описание возможных неопределенностей и будущих сценариев развития реакций на воздействия;
  5. Переход к описанию и представлению сложной системы как определенного «черного ящика» с ограниченным количеством входов и выходов;
  6. Разбиение по структуре, компонентам и функциям систем.

В ходе решения этих задач осуществляются следующие функции анализа:

  1. Проведение функционального и структурного анализа систем;
  2. Проведение анализа взаимосвязей систем между собой, то есть морфологического их состава;
  3. Создание описаний предысторий, прогнозирования и возможных тенденций дальнейшего развития, то есть так называемый анализ генетики;
  4. Поиск и анализ возможных аналогов среди подобных сложных систем;
  5. Проверка эффективности разрабатываемых сценариев развития реакций на различные виды воздействий;
  6. Формирование основных требований для улучшения существующих и создания новых сложных систем.

Готовые работы на аналогичную тему

В ходе решения сформулированных задач системного анализа осуществляются следующие функции синтеза:

  1. Проведение необходимых расчетов по разработке системных моделей;
  2. Проведение синтеза структуры проверяемой сложной системы;
  3. Переход к параметрическому синтезу сложной системы;
  4. Создание на основе функций (декомпозиции, анализа, синтеза) новых оценивающих методик проверки объектов системного анализа.

Возможности практического применения метода системного анализа

Любой метод хорош при возможности его эффективного применения. Такое практическое применение целесообразно для решения целого ряда разнообразных прикладных задач. И системный анализ в этом не исключение, так как основан на применении множества разносторонних принципов, в том числе и общего характера, обобщении человеческого опыта взаимодействия с разнообразными сложными системами.

Важным базовым принципом системного анализа является так называемый принцип конечной цели, заключающийся в глобальном приоритете основной цели.

Рисунок 1. Этапы системного анализа. Автор24 — интернет-биржа студенческих работ

Этот принцип конечной цели при этом имеет определенные правила:

  • анализ должен начинаться с выяснения основной цели исследования системы, что позволяет четко сформулировать все важные показатели качества, а также необходимые критерии оценки и основные свойства;
  • синтез систем должен строиться на оценке последствий каждого воздействия в сторону изменения исследуемой сложной системы в положительную или отрицательную сторону и возможности ее совершенствования для достижения поставленной глобальной цели;
  • основная цель создания и функционирования созданной искусственной сложной системы определяется суперсистемой, проверяемая система всегда будет являться элементом такой суперсистемы.

Применимость системного анализа в управленческой деятельности

Применять результаты комплексного системного анализа можно для решения целого перечня проблем управленческой деятельности сложных систем:

  • для упорядочивания и определения целей, а также параметров и задач, ресурсов и элементов структур сложных систем;
  • для своевременного выявления определяющих дальнейшее возможное негативное поведение свойства анализируемых систем;
  • для определения и классификации всего перечня связей между элементами сложных систем;
  • для определения влияющих на функционирование узких мест объектов систем или нерешенных ранее проблем, а также факторы неопределенности сложных систем и выработки возможных решений по устранению;
  • для определенной формализации слабоструктурированных проблем и раскрытия их возможных негативных последствий для функционирования;
  • для разработки всесторонней модели характеристик каждой из проблем с возможностью проработки всех вариантов поведения сложной системы в зависимости от внешних и внутренних неблагоприятных и управляющих воздействий на нее;
  • для указания необходимых первоочередных задач из разработанного перечня выполнения задач по улучшению функционирования сложных систем и отдельных объектов в них.

Применимость системного анализа в логистике

Применять результаты системного анализа можно и в логистике, это позволяет в комплексе использовать его:

Источник

Системный анализ

Системный анализ — научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Содержание

Истоки системного анализа

Системный анализ возник в эпоху разработки компьютерной техники. Успех его применения при решении сложных задач во многом определяется современными возможностями информационных технологий. Н. Н. Моисеев приводит, по его выражению, довольно узкое определение системного анализа: «Системный анализ — это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем — технических, экономических, экологических и т.д. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития региона, параметров конструкции и т. д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: исследование операций и общая теория управления».

Сущность системного анализа

Ценность системного подхода состоит в том, что рассмотрение категорий системного анализа создает основу для логического и последовательного подхода к проблеме принятия решений. Эффективность решения проблем с помощью системного анализа определяется структурой решаемых проблем.

Классификация проблем

Согласно классификации, все проблемы подразделяются на три класса:

  • хорошо структурированные (well-structured), или количественно сформулированные проблемы, в которых существенные зависимости выяснены очень хорошо;
  • неструктурированные (unstructured), или качественно выраженные проблемы, содержащие лишь описание важнейших ресурсов, признаков и характеристик, количественные зависимости между которыми совершенно неизвестны;
  • слабо структурированные (ill-structured), или смешанные проблемы, которые содержат как качественные элементы, так и малоизвестные, неопределенные стороны, которые имеют тенденцию доминировать.

Методы решения

Для решения хорошо структурированных количественно выражаемых проблем используется известная методология исследования операций, которая состоит в построении адекватной математической модели (например, задачи линейного, нелинейного, динамического программирования, задачи теории массового обслуживания, теории игр и др.) и применении методов для отыскания оптимальной стратегии управления целенаправленными действиями.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

  • абстрагирование и конкретизация
  • анализ и синтез, индукция и дедукция
  • формализация и конкретизация
  • композиция и декомпозиция
  • линеаризация и выделение нелинейных составляющих
  • структурирование и ре структурирование
  • макетирование
  • реинжиниринг
  • алгоритмизация
  • моделирование и эксперимент
  • программное управление и регулирование
  • распознавание и идентификация
  • кластеризация и классификация
  • экспертное оценивание и тестирование
  • верификация

и другие методы и процедуры.

Процедура принятия решений

Для решения слабо структурированных проблем используется методология системного анализа, системы поддержки принятия решений (СППР). Рассмотрим технологию применения системного анализа к решению сложных задач.

Процедура принятия решений согласно [2] включает следующие основные этапы:

  1. формулировка проблемной ситуации;
  2. определение целей;
  3. определение критериев достижения целей;
  4. построение моделей для обоснования решений;
  5. поиск оптимального (допустимого) варианта решения;
  6. согласование решения;
  7. подготовка решения к реализации;
  8. утверждение решения;
  9. управление ходом реализации решения;
  10. проверка эффективности решения.

Для многофакторного анализа, алгоритм можно описать и точнее:

  1. описание условий (факторов) существования проблем, И, ИЛИ и НЕ связывание между условиями;
  2. отрицание условий, нахождение любых технически возможных путей. Для решения нужен хотя бы один единственный путь. Все И меняются на ИЛИ, ИЛИ меняются на И, а НЕ меняются на подтверждение, подтверждение меняется на НЕ-связывание;
  3. рекурсивный анализ вытекающих проблем из найденных путей, то есть п.1 и п.2 заново для каждой подпроблемы;
  4. оценка всех найденных путей решений по критериям исходящих подпроблем, сведенным к материальной или иной общей стоимости.

См. также

Источники

Ссылки

  • Кибернетика
  • Информационные технологии
  • Системный анализ
  • Менеджмент
  • Решение задач

Wikimedia Foundation . 2010 .

Смотреть что такое «Системный анализ» в других словарях:

СИСТЕМНЫЙ АНАЛИЗ — 1) в узком смысле совокупность методологич. средств, используемых для подготовки и обоснования решений по сложным проблемам политич., воен., социального, экономич., науч., тех нйч. характера. 2) В широком смысле термин «С. а.» иногда… … Философская энциклопедия

системный анализ — СИСТЕМНЫЙ АНАЛИЗ совокупность методов и средств, используемых при исследовании и конструировании сложных и сверхсложных объектов, прежде всего методов выработки, принятия и обоснования решений при проектировании, создании и управлении… … Энциклопедия эпистемологии и философии науки

системный анализ — Совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам различного характера. Он опирается на системный подход, а также на ряд математических методов и современных методов управления. Основная … Справочник технического переводчика

Системный Анализ — (systems analysis) Изучение или анализ задач и проблем системы, направленные на развитие и усовершенствование этой системы путем внедрения компьютеров. Системный анализ завершается точными рекомендациями того, что надо сделать, определением… … Словарь бизнес-терминов

СИСТЕМНЫЙ АНАЛИЗ — СИСТЕМНЫЙ АНАЛИЗ, совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход … Современная энциклопедия

СИСТЕМНЫЙ АНАЛИЗ — совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход, а также на ряд… … Большой Энциклопедический словарь

Системный анализ — СИСТЕМНЫЙ АНАЛИЗ, совокупность методологических средств, используемых для подготовки и обоснования решений по сложным проблемам политического, военного, социального, экономического, научного и технического характера. Опирается на системный подход … Иллюстрированный энциклопедический словарь

СИСТЕМНЫЙ АНАЛИЗ — (от греч. systema целое, составленное из частей и анализ) совокупность методов и средств исследования сложных, многоуровневых и многокомпонентных систем, объектов, процессов, опирающихся на комплексный подход, учет взаимосвязей и взаимодействий… … Экономический словарь

системный анализ — Исследование функциональных и структурных взаимосвязей природных явлений, рассматриваемых в качестве системы, в которой определяются границы, возможности использования, а также положение и роль в следующей по рангу природной системе. Syn.:… … Словарь по географии

СИСТЕМНЫЙ АНАЛИЗ — СИСТЕМНЫЙ АНАЛИЗ, метод анализа процесса или операции для улучшения производительности, в частности, с помощью КОМПЬЮТЕРА, который способен оперировать большим числом независимых действий, объединенных в одну сложную операцию … Научно-технический энциклопедический словарь

Источник

Методология принятия логистических решений

Методология — это учение о структуре, логической организации, методах и средствах деятельности. Современная теория логистики в концептуальном плане базируется на четырех методологиях: системного анализа (общая теория систем), кибернетического подхода (кибернетика), исследования операций, прогностики. Сформулируем логическую последовательность использования описанных научных направлений при анализе, синтезе и оптимизации ЛС.

  1. ЛЦ с движущимися по ней сквозными потоками объективно представляет собой сложную или большую ЛС, т.е. может быть исследована средствами общей теории систем.
  2. ЛС являются искусственными, динамическими и целенаправленными. Для таких систем актуальны проблемы управления, задачи анализа и синтеза управляемых и управляющих систем, которые могут быть изучены, решены и смоделированы методами кибернетики.
  3. Если речь идет о системе управления, то возникают задачи выбора оптимального решения и оценки эффективности управления. Решение этих задач обеспечивают методы исследования операций.
  4. Любая организационно-экономическая деятельность, а значит и управление логистическими потоковыми процессами немыслимы без перспективного их планирования, без научно обоснованных прогнозов параметров и тенденций развития внешней среды, показателей логистических процессов в ЛС и др. Такие задачи решаются на основе методов и принципов прогностики.

5.1. Системный анализ

Общая теория систем — научная дисциплина, разрабатывающая методологические принципы исследования систем. Главная особенность общей теории систем в подходе к объектам исследования как к системам.

Системный анализ — это методология общей теории систем, заключающаяся в исследовании любых объектов посредством представления их в качестве систем, проведения их структуризации и последующего анализа.

Основными задачами системного анализа являются:

  • задача декомпозиции означает представление системы в виде подсистем, состоящих из более мелких элементов;
  • задача анализа состоит в нахождении различного рода свойств системы, ее элементов и окружающей среды с целью определения закономерностей поведения системы;
  • задача синтеза состоит в том, чтобы на основе знаний о системе, полученных при решении первых двух задач, создать модель системы, определить ее структуру, параметры, обеспечивающие эффективное функционирование системы, решение задач и достижение поставленных целей.

Основные функции системного анализа в рамках описанных трех основных задач представлены в табл. 5.1.

Таблица 5.1. Основные задачи и функции системного анализа

Структура системного анализа
Декомпозиция Анализ Синтез
Определение и декомпозиция общей цели, основной функции Функционально- структурный анализ Разработка модели системы
Выделение системы из среды Морфологический анализ (анализ взаимосвязи компонентов) Структурный синтез
Описание воздействующих факторов Генетический анализ (анализ предыстории, тенденций, прогнозирование) Параметрический синтез
Описание тенденций развития, неопределенностей Анализ аналогов Оценивание системы
Описание как «черного ящика» Анализ эффективности
Функциональная, компонентная и структурная декомпозиция Формирование требований к создаваемой системе

Системный анализ основывается на множестве принципов, т.е. положениях общего характера, обобщающих опыт работы человека со сложными системами. Одним из основных принципов системного анализа является принцип конечной цели, который заключается в абсолютном приоритете глобальной цели и имеет следующие правила:

  1. для проведения системного анализа необходимо в первую очередь сформулировать основную цель исследования;
  2. анализ следует вести на базе уяснения основной цели исследуемой системы, что позволит определить ее основные свойства, показатели качества и критерии оценки;
  3. при синтезе систем любую попытку изменения или совершенствования существующей системы надо оценивать относительно того, помогает или мешает она достижению конечной цели;
  4. цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью.

Применение системного анализа в логистике позволяет:

  • определить и упорядочить элементы, цели, параметры, задачи и ресурсы ЛС, определить структуру ЛС;
  • выявить внутренние свойства ЛС, определяющие ее поведение;
  • выделить и классифицировать связи между элементами ЛС;
  • выявить нерешенные проблемы, узкие места, факторы неопределенности, влияющие на функционирование, возможные логистические мероприятия;
  • формализовать слабоструктурированные проблемы, раскрыть их содержание и возможные последствия перед предпринимателями;
  • выделить перечень и указать целесообразную последовательность выполнения задач функционирования ЛС и отдельных ее элементов;
  • разработать модели, характеризующие решаемую проблему со всех основных сторон и позволяющие «проигрывать» возможные варианты действий и т.п.

5.2. Кибернетический подход

Кибернетика — наука об общих законах управления в природе, обществе, живых организмах и машинах, изучающая информационные процессы, связанные с управлением динамических систем. Кибернетический подход — исследование системы на основе принципов кибернетики, в частности с помощью выявления прямых и обратных связей, изучения процессов управления, рассмотрения элементов системы как неких » черных ящиков » (систем, в которых исследователю доступна лишь их входная и выходная информация, а внутреннее устройство может быть и неизвестно).

У кибернетики и общей теории систем есть много общего, например, представление объекта исследования в виде системы, изучение структуры и функций систем, исследование проблем управления и др. Но в отличие от теории систем кибернетика практикует информационный подход к исследованию процессов управления, который выделяет и изучает в объектах исследования различные виды потоков информации, способы их обработки, анализа, преобразования, передачи и т.д. Под управлением в самом общем виде понимается процесс формирования целенаправленного поведения системы посредством информационного воздействия, вырабатываемого человеком или устройством. Выделяют следующие задачи управления:

  • задача целеполагания — определение требуемого состояния или поведения системы;
  • задача стабилизации — удержание системы в существующем состоянии в условиях возмущающих воздействий;
  • задача выполнения программы — перевод системы в требуемое состояние в условиях, когда значения управляемых величин изменяются по известным детерминированным законам;
  • задача слежения — обеспечение требуемого поведения системы в условиях, когда законы изменения управляемых величин неизвестны или изменяются;
  • задача оптимизации — удержание или перевод системы в состояние с экстремальными значениями характеристик при заданных условиях и ограничениях.

С точки зрения кибернетического подхода управление ЛС рассматривается как совокупность процессов обмена, обработки и преобразования информации. Кибернетический подход представляет ЛС как систему с управлением (рис. 5.1), включающую три подсистемы: управляющую систему, объект управления и систему связи.

Управляющая система совместно с системой связи образует систему управления. Система связи включает канал прямой связи, по которому передается входная информация и канал обратной связи, по которому к управляющей системе передается информация о состоянии объекта управления . Информация об управляемом объекте и внешней среде воспринимается управляющей системой, перерабатывается в соответствии с той или иной целью управления и в виде управляющих воздействий передается на объект управления. Использование понятия обратной связи является отличительной чертой кибернетического подхода.

Основными группами функций системы управления являются:

  • функции принятия решений или функции преобразования содержания информации являются главными в системе управления, выражаются в преобразовании содержания информации о состоянии объекта управления и внешней среды в управляющую информацию;
  • рутинные функции обработки информации не изменяют смысла информации, а охватывают лишь учет, контроль, хранение, поиск, отображение, тиражирование, преобразование формы информации;
  • функции обмена информацией связаны с доведением выработанных решений до объекта управлений и обменом информации между лицами, принимающими решение (сбор, передача информации текстовой, графической, табличной, электронной и др. по телефону, факсу, локальным или глобальным сетям передачи данных и т.д.).

Применение кибернетического подхода к логистике требует описания основных свойств ЛС при помощи математических моделей. Это позволяет разрабатывать и автоматизировать алгоритмы оптимизации кибернетической системы управления.

Источник

Читайте также:  Сдать анализы самара суббота