Корреляционный анализ. Различают два типа связей между различными явлениями и их признаками: функциональную или жестко детерминированную
Различают два типа связей между различными явлениями и их признаками: функциональную или жестко детерминированную, с одной стороны, и статистическую или стохастически детерминированную, с другой. Строго определить различие этих двух типов связи можно тогда, когда они получают математическую формулировку. Для простоты будем говорить о связи двух явлений или двух признаков, математически отображаемой в форме уравнения связи двух переменных.
Если с изменением значения одной из переменных вторая изменяется строго определенным образом, т. е. значению одной переменной соответствует одно или несколько точно заданных значений другой переменной, связь между ними является функциональной.
Нередко говорят о строгом соответствии лишь одного значения второй из переменных каждому значению первой из них, но это неверно. Например, связь между x и y является строго функциональной если y=√x; но значению x=4 соответствует не одно, а два значения; y1=2 и y2=-2. Уравнения более высоких степеней могут иметь несколько корней, связь разумеется остается функциональной.
Функциональная связь двух величин возможна лишь при условии, что вторая из них зависит только от первой и ни от чего более. В реальной природе таких связей нет; они являются лишь абстракциями, полезными и необходимыми при анализе явлений, но упрощающими реальность. Функциональная зависимость данной величины y от многих факторов x1, x2, . xk возможна только в том случае, если величина y всегда зависит только от переменного набора факторов x1, x2, . xk и ни от чего больше. Между тем все явления и процессы реального мира связаны между собой, и нет такого конечного числа переменных k, которые абсолютно полно определяли бы собой зависимую величину y. Следовательно, множественная функциональная зависимость переменных есть тоже абстракция, упрощающая реальность.
Однако в науке успешно используют представление связей как функциональных не только в аналитических целях, но нередко и в целях прогнозирования. Это возможно потому, что в некоторых простых системах интересующая нас переменная зависит в основном (скажем на 99% или даже на 99.99%) от немоногих других переменных или только от одной переменной. То есть связь в такой несложной системе является хотя и не абсолютно функциональной, но практически очень близкой к таковой.
Длина года (период обращения Земли вокруг Солнца) почти функционально зависит только от массы Солнца и расстояния Земли от него. На самом деле она зависит в очень слабой степени и от масс, и расстояния других планет от Земли, но вносимые ими (и тем более в миллионы раз более далекими звездами) искажения функциональной связи для всех практических целей, кроме космонавтики, пренебрежимо малы.
Статистическая связь не имеет ограничений и условий, присущих функциональной связи. Если с изменением значения одной переменной вторая может в определенных пределах принимать любые значения с вероятностями, но ее среднее значение или иные статистические (массовые) характеристики изменяются по определенному закону — связь является статистической. Иными словами, при статистической связи разным значениям одной переменной соответствуют разные распределения значений другой переменной.
Корреляционной связью называют важнейший частный случай статистической связи, состоящий в том, что различным значениям одной переменной соответствуют различные средние значения другой. С изменением значения x закономерным образом изменяется среднее значение признака y; в то время как в каждом отдельном случае значение признака y (с различными степенями вероятности) может принимать множество различных значений.
Если же с изменением значения признака x среднее значение признака y не изменяется закономерным образом, но закономерно изменяется другая статистическая характерис-тика (показатели вариации, асимметрии, эксцесса и т.п.), то связь является не корреляционной, а статистической.
Статистическая связь между двумя признаками (переменными величинами) предполагает, что каждый из них имеет случайную вариацию индивидуальных значений относительно средней величины. Если же такую вариацию имеет лишь один из признаков, а значения другого являются строго детерминированными, то говорят лишь о регрессии, но не о статистической (тем более корреляционной) связи.
При анализе динамических рядов можно измерять регрессию уровней ряда урожайности (имеющих случайную изменчивость) на номера лет. Но нельзя говорить о корреляции между ними и применять показатели корреляции с соответствующей им интерпретацией.
Само слово корреляция ввел в употребление в статистику английский биолог и статистик Френсис Гальтон в конце XIX века. Тогда оно писалось как “corelation” (соответствие), но не просто “связь” (relation), а “как бы связь”, т.е. связь, но не в привычной функциональной форме. В науке вообще, а именно в палеонтологии, термин “корреляция” применял еще раньше, в конце XVIII века французский палеонтолог Жорж Кювье. Он ввел даже “закон корреляции” частей и органов животных. “Закон корреляции” помогает восстановить по найденным в раскопках черепу, костям и т.д. облик всего животного и его место в системе: если череп с рогами, то это было травоядное животное, а его конечностями были копыта; если же лапа с когтями — то хищное животное без рогов, но с крупными клыками.
Например, измеряем рост и вес человека, каждое измерение представлено точкой в двумерном пространстве:
Несмотря на то, что величины носят случайный характер, в общем наблюдается некоторая зависимость — величины коррелируют.
В данном случае это положительная корреляция (при увеличении одного параметра второй тоже увеличивается). Возможны также такие случаи:
Источник
Метод корреляционного анализа: пример. Корреляционный анализ — это.
В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).
Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).
Понятие о корреляционном анализе
Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.
Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.
Понятие о ложности корреляции
При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.
В этом случае говорят о ложной корреляции.
Задачи корреляционного анализа
Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.
Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:
- выявление факторов, оказывающих наибольшее влияние на результативный признак;
- выявление неизученных ранее причин связей;
- построение корреляционной модели с ее параметрическим анализом;
- исследование значимости параметров связи и их интервальная оценка.
Связь корреляционного анализа с регрессионным
Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами. Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод корреляционно-регрессионного анализа.
Условия использования метода
Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.
Правила отбора факторов корреляционного анализа
При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.
Отображение результатов
Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.
При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.
Трехмерное представление диаграммы разброса (рассеивания)
Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.
Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.
Оценка тесноты связи
Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.
Пример применения метода корреляционного анализа
В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.
Фермеры, лесники и рыбаки
Шахтеры и работники карьеров
Производители газа, кокса и химических веществ
Изготовители стекла и керамики
Работники печей, кузнечных, литейных и прокатных станов
Работники электротехники и электроники
Инженерные и смежные профессии
Изготовители рабочей одежды
Работники пищевой, питьевой и табачной промышленности
Производители бумаги и печати
Производители других продуктов
Художники и декораторы
Водители стационарных двигателей, кранов и т. д.
Рабочие, не включенные в другие места
Работники транспорта и связи
Складские рабочие, кладовщики, упаковщики и работники разливочных машин
Работники службы спорта и отдыха
Администраторы и менеджеры
Профессионалы, технические работники и художники
Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).
Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.
С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.
Использование ПО при проведении корреляционного анализа
Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих параметров с использованием функций:
1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.
Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.
Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».
После указания исходных данных получаем график.
2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).
3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.
В заключение
Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.
После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины. Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel. Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.
Источник
Корреляционный анализ
Корреляционный анализ – раздел математической статистики, исследующий зависимости между двумя или более случайными величинами. Термин «Correlation» означает взаимосвязь, взаимоотношение.
Функциональная зависимость и корреляция
Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная взаимосвязь.
В области физической культуры и спорта можно привести много примеров такой взаимосвязи. Например, от уровня силы во многом зависит результат, показанный спортсменом в таких видах спорта, как тяжелая атлетика, пауэрлифтинг, гиревой спорт, метание диска и толкание ядра и т.д. Результат в беге на 100 м во многом зависит от процента содержания в мышцах спортсменов быстрых мышечных волокон (II типа). Доказано, что у выдающихся спринтеров этот показатель превышает 80%. Чтобы определить, насколько сильна взаимосвязь между переменными (признаками) используется корреляционный анализ.
Две случайные величины X и Y могут быть:
- связаны функциональной зависимостью (жестко, как зависимость переменных в математическом анализе);
- независимыми;
- связаны стохастической (вероятностной зависимостью) при которой изменение одной величины влечет изменение распределения другой.
В качестве меры связи между случайными величинами используется коэффициент корреляции. Коэффициент корреляции для генеральной совокупности обозначается ρ. Однако, как правило, он неизвестен. Поэтому он оценивается по экспериментальным данным, представляющим выборку объема n, полученную при совместном измерении двух переменных (признаков) X и Y. Коэффициент корреляции, определяемый по выборочным данным называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r. Наиболее часто в качестве оценок генерального коэффициента корреляции используется коэффициент корреляции Пирсона (r) и коэффициент корреляции Спирмена (rs).
Коэффициент корреляции Пирсона ( r )
Чтобы правильно применять корреляционный анализ в научных исследованиях, нужно учитывать условия применения этого метода.
Условия, при которых возможен расчет коэффициента корреляции Пирсона:
- Экспериментальные данные должны быть представлены в только в интервальной шкале или шкале отношений.
- Распределение экспериментальных данных подчиняется нормальному закону.
- Предполагается линейная зависимость между случайными величинами X и Y.
Коэффициент корреляции Спирмена ( r S)
При расчете коэффициента корреляции Спирмена требования к исходным данным менее строгие, а именно:
- Данные могут быть представлены в порядковой, интервальной шкале или шкале отношений.
- Допускается любой закон распределения случайных величин X и Y.
- Между случайными величинами X и Y должна существовать монотонно-возрастающая или монотонно-убывающая зависимость.
Свойства оценок коэффициентов корреляции
Рассчитанные коэффициенты корреляции могут принимать значения от -1 до +1.
- Если коэффициент корреляции равен: r =+1 и r = -1, это означает, что случайные величины X и Y связаны жесткой линейной зависимостью.
- Если r ≠ 0, то чем ближе |r| к единице, тем сильнее линейная зависимость случайных величин X и Y.
- Если коэффициент корреляции положительный (r > 0) – это означает, что между случайными величинами X и Y существует положительная корреляция (или другими словами положительная корреляционная зависимость). Примером положительной корреляционной зависимости является увеличение результата прыжка в длину с увеличением силы мышц ног (рис.1А).
- Eсли коэффициент корреляции отрицательный (r < 0) – это означает, что между случайными величинами X и Y существует отрицательная корреляция (или другими словами отрицательная корреляционная зависимость). Примером отрицательной корреляционной зависимости является уменьшение результата пробегания 100 м с увеличением силы мышц ног (рис. 1Б)
- Если коэффициент корреляции равен нулю (r = 0) – это означает, что корреляции нет; случайные величины X и Y некоррелированы (рис. 1В). Другими словами, это означает, что между случайными величинами X и Y нет взаимосвязи.
Геометрическая интерпретация коэффициента корреляции
Корреляция считается положительной, если график имеет выраженное направление из левого нижнего угла в правый верхний угол и с увеличением значений одной переменной другая также увеличивается;
Корреляция считается отрицательной, если график имеет направление из левого верхнего угла в правый нижний, и с увеличением одной переменной, другая уменьшается;
Корреляция отсутствует, когда у корреляционного облака нет четко выраженного направления, точки рассеиваются далеко от воображаемой прямой и нельзя сказать, что с увеличением одной переменной другая уменьшается или увеличивается.
Рис. 1. Геометрическая интерпретация коэффициента корреляции
Значимость коэффициента корреляции
Коэффициент корреляции между случайными величинами X и Y для генеральной совокупности как правило, неизвестен. Однако его можно оценить, рассчитав выборочный коэффициент корреляции (коэффициент корреляции Пирсона или Спирмена). Но при заменяя генеральную совокупность выборкой при оценке коэффициента корреляции допускается ошибка. Поэтому важно оценить значимость (достоверность) рассчитанного коэффициента корреляции.
Например, в эксперименте участвовало 10 человек. Оценивалась взаимосвязь между результатами в беге на 30 м и 100 м. Получен коэффициент корреляции r = 0,611. Чтобы оценить значимость коэффициента корреляции нужно сравнить его с критическим, величина которого зависит от объема выборки и уровня значимости. Если фактическое значение коэффициента корреляции больше, чем критическое, это означает, что коэффициент корреляции достоверен (значим). В нашем случае критическое значение коэффициента корреляции при n= 10 и α = 0,05 составляет r0,05 =0,632 (в таблице 1 это значение выделено жирным шрифтом). Из этого следует, что рассчитанный коэффициент корреляции статистически недостоверен. Приводить его в своих исследованиях нежелательно.
Таблица 1 — Критические значения коэффициента корреляции Пирсона
n | 0,05 | 0,01 | 0,001 |
3 | 0,9969 | 0,999877 | 0,99999877 |
4 | 0,950 | 0,9900 | 0,9990 |
5 | 0,878 | 0,9597 | 0,99114 |
6 | 0,811 | 0,9172 | 0,9741 |
7 | 0,754 | 0,875 | 0,9509 |
8 | 0,707 | 0,834 | 0,9244 |
9 | 0,666 | 0,798 | 0,898 |
10 | 0,632 | 0,765 | 0,872 |
20 | 0,444 | 0,561 | 0,679 |
30 | 0,361 | 0,463 | 0,570 |
40 | 0,312 | 0,402 | 0,501 |
50 | 0,279 | 0,361 | 0,451 |
В итоговой таблице необходимо указать объем выборки, чтобы читающий мог оценить значимость (достоверность) вычисленных коэффициентов корреляции. Иногда в публикациях приводятся только значимые коэффициенты корреляции, а вместо незначимых ставится прочерк. В таблице 2 авторы указали, что объем выборки равен n = 32. Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (В.С.Иванов, 1990). Следовательно, все коэффициенты корреляции достоверны.
Таблица 2 — Значения коэффициентов корреляции между результатами в скоростно-силовых тестах и результатом в толкании ядра с разгоном n=32, спортивный результат группы варьировал от 12,00 м до 20,50. Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (по: Я.Е.Ланка, Ан.А.Шалманов, 1982).
Источник
Основы корреляционного анализа. Примеры анализа прямолинейной связи при парной корреляции
Исследование объективно существующих связей между явлениями — важнейшая задача статистики. В процессе статистического исследования зависимостей выявляются причинно-следственные отношения между явлениями. Причинно-следственные отношения — это такая связь явлений и процессов, когда изменение одного из них — причины ведет к изменению другого — следствия.
Признаки явлений и процессов по их значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называют факторными, или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными.
В статистике различают функциональные и стохастические (вероятностные) связи явлений и процессов:
- Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного.
- Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической (вероятностной). Частным случаем стохастической связи является корреляционная связь.
Кроме того, связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.
- Прямая связь — это такая связь, при которой с увеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
- В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.
По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные:
- Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида: у=а+bх.
- Если же связь может быть выражена уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной (криволинейной) связью.
Теснота связи показывает меру влияния факторного признака на общую вариацию результативного признака. Классификация связи по степени тесноты представлена в таблице 1.
Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: приведения параллельных данных, аналитических группировок, графический, корреляции. Основным методом изучения статистической взаимосвязи является статистическое моделирование связи на основе корреляционного и регрессионного анализа.
Корреляция — это статистическая зависимость между случайными величинами, не имеющая строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой. В статистике принято различать следующие виды корреляции:
- парная корреляция — связь между двумя признаками (результативным и факторным, или двумя факторными);
- частная корреляция — зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;
- множественная корреляция — зависимость результативного и двух или более факторных признаков, включенных в исследование.
Задачей корреляционного анализа является количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).
Теснота связи количественно выражается величиной коэффициентов корреляции, которые давая количественную характеристику тесноты связи между признаками, позволяют определять «полезность» факторных признаков при построении уравнения множественной регрессии.
Корреляция взаимосвязана с регрессией, поскольку первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму.
Регрессионный анализ заключается в определении аналитического выражения связи в виде уравнения регрессии.
Регрессией называется зависимость среднего значения случайной величины результативного признака от величины факторного, а уравнением регрессии – уравнение описывающее корреляционную зависимость между результативным признаком и одним или несколькими факторными.
Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции представлены в таблице 2.
Примеры решения задач по теме «Основы корреляционного анализа»
Задача 1 (анализ прямолинейной связи при парной корреляции). Имеются данные о квалификации и месячной выработке пяти рабочих цеха:
Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.
Решение. Расширим предлагаемую таблицу.
Определим параметры уравнения прямой yx = a +bx. Для этого решим систему уравнений:
Значит коэффициент регрессии равен 18.
Поскольку в — положительное число, то имеется прямая связь между параметрами x и у.
а=92-4×18
а=20
Линейное уравнение связи имеет вид ух=20+18х.
Для определения тесноты (силы) связи между изучаемыми признаками определим величину коэффициента корреляции по формуле:
= (2020-20×460/5)/(√10×√3280) ≈ 180/181,11=0,99. Поскольку коэффициент корреляции больше 0,7, то связь в данном ряду сильная.
Задача 2. На предприятии цены на изделия снижены с 80 руб. за единицу до 60 руб. После снижения цен продажа возросла с 400 до 500 единиц в день. Определить абсолютную и относительную эластичность. Сделать оценку эластичности с целью возможности (или невозможности) дальнейшего снижения цен.
Решение. Рассчитаем показатели, позволяющие провести предварительный анализ эластичности:
Как видим, темпы снижения цены равны по абсолютной величине темпам увеличения спроса.
Абсолютную и относительную эластичность найдем по формулам:
= (500-400)/(60-80) =100/(-20) -5 — эластичность абсолютная
= (100:400)/(-20:80) = -1 — эластичность относительная
Модуль относительной эластичности равен 1. Это подтверждает тот факт, что темп роста спроса равен темпу снижения цены. В такой ситуации вычислим выручку, получаемую предприятием ранее и после снижения цены: 80*400 = 32 000 руб. в день, 60*500 = 30 000 руб. в день – как видим, выручка снизилась и дальнейшее снижение цен не является целесообразным.
Другие статьи по данной теме:
- назад:Экономические индексы в статистике: понятие, виды, формулы
- далее:Статистический анализ социально-экономического развития общества
Список использованных источников
- Белобородова С.С. и др. Теория статистики: Типовые задачи с контрольными заданиями. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2001;
- Минашкин В.Г. и др. Курс лекций по теории статистики. / Московский международный институт эконометрики, информатики, финансов и права. — М., 2003;
- Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005;
- Фёдорова Л.Н., Фёдорова А.Е. Методические указания по написанию контрольной работы по курсу «Статистика» для студентов экономических специальностей: УрГЭУ, 2007;
2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна
Источник