Корреляционный анализ это вид математического анализа
Корреляционный анализ
В статье рассматриваются определения корреляции,корреляционного анализа и коэффициента корреляции. Дается определение корреляционной связи и ее основных характеристик.
Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.
В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.
Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.
При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.
При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.
Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.
Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.
Корреляционный анализ — метод, позволяющий обнаружить зависимость между несколькими случайными величинами.
Корреляционный анализ решает две основные задачи:
Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.
Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.
Методами корреляционного анализа решаются следующие задачи:
Взаимосвязь. Есть ли взаимосвязь между параметрами?
Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.
Корреляция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.
Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.
Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (xi, yi), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.
К основным свойствам коэффициента корреляции относятся:
Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
При независимом варьировании признаков, когда связь между ними отсутствует, r = 0 .
При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (–) знаком и находится в пределах от 0 до –1, т.е. -1 < r <0.
Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к ô1ô. Если r = ± 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n –2, где: n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.
Рассчитывается коэффициент корреляции по следующей формуле:
где x — значение факторного признака; y — значение результативного признака; n — число пар данных.
Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения xi,yi двух признаков x,y. Если экспериментальных данных сравнительно немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений xi,yi . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.
Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал, то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x и y графически в виде геометрического места точек в системе прямоугольных координат. Эта графическая зависимость называется диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров:
коэффициента корреляции p , который является мерой связи между случайными величинами, х и у. Приведем примеры корреляционных полей.
Если р = 0, то значения xi,yi, полученные из двумерной нормальной совокупности, располагаются на графике в пределах области, ограниченной окружностью. В этом случае между случайными величинами x и y отсутствует корреляция, и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин x и y.
Если р = 1 или р = -1, то говорят о полной корреляции, то есть между случайными величинами x и y существует линейная функциональная зависимость.
При р = 1 значения xi,yi определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением xi значения yi также увеличиваются).
При р = -1 прямая имеет отрицательный наклон.
В промежуточных случаях, когда -1< p <1, определяемые значениями xi,yi точки попадают в область, ограниченную некоторым эллипсом, причём при p>0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p<0 корреляция отрицательная. Чем ближе p к ±1, тем уже эллипс и тем теснее точки, определяемые экспериментальными значениями, группируются около прямой линии.
Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях рассматривают нелинейную корреляцию.
Корреляционную зависимость между признаками можно описывать разными способами, в частности, любая форма связи может быть выражена уравнением общего вида y=f(x), где признак y – зависимая переменная, или функция от независимой переменной x, называемой аргументом.
Таким образом, визуальный анализ корреляционного поля помогает определить не только наличие статистической связи (линейной или нелинейной) между исследуемыми признаками, но и ее тесноту и форму.
По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).
При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака — более низкие значения другого. При отрицательной корреляции соотношения обратные.
Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции — отрицательный знак.
При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в действительности на изменение результативного признака влияет множество факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий роль решающего фактора может перейти к другому признаку.
При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. Также с учетом степени тесноты связи оценивается необходимость более подробного изучения конкретной данной связи и значение практического ее использования.
В общем, знание количественной оценки тесноты корреляционной связи позволяет решить следующую группу вопросов:
необходимость глубокого изучения данной связи между признаками и целесообразность ее практического применения;
степень различий в проявлении связи в конкретных условиях (сопоставление оценки тесноты связи для различных условий);
выявление главных и второстепенных факторов в данных конкретных условиях путём последовательного рассмотрения и сравнения признака с различными факторами.
Показатели тесноты связи должны удовлетворять ряду основных требований:
величина показателя тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует;
при наличии между изучаемыми признаками функциональной связи величина показателя тесноты связи должна быть равна единице;
при наличии между признаками корреляционной связи абсолютное значение показателя тесноты связи должно выражаться правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице).
Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили парные показатели, характеризующие взаимосвязь двух случайных величин: коэффициент ковариации (корреляционный момент) и линейный коэффициент корреляции (коэффициент корреляции Пирсона).
Сила связи определяется абсолютным значением показателя тесноты связи и не зависит от направления связи.
В зависимости от абсолютного значения коэффициента корреляции p корреляционные связи между признаками по силе делятся следующим образом:
сильная, или тесная (при p >0,70);
средняя (при 0,50< p <0,69);
умеренная (при 0,30< p <0,49);
слабая (при 0,20< p <0,29);
очень слабая (при p <0,19).
По форме корреляционная связь может быть линейной или нелинейной.
Линейной может быть, например, связь между уровнем подготовки студента и оценками итоговой аттестации. Пример нелинейной связи — уровень мотивации и эффективность выполнения поставленной задачи. (При повышении мотивации эффективность выполнения задачи сначала возрастает, затем, при определённом уровне мотивации, достигается максимальная эффективность; но дальнейшему повышению мотивации сопутствует уже снижение эффективности.)
По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).
При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака — более низкие значения другого. При отрицательной корреляции соотношения обратные.
Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции — отрицательный знак.
Источник
Корреляционный анализ
Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.
Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.
Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.
Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.
Содержание
Коэффициент корреляции
Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.
Коэффициент корреляции Пирсона
Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:
Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:
Коэффициент корреляции Кенделла
Используется для измерения взаимной неупорядоченности.
Коэффициент корреляции Спирмена
Свойства коэффициента корреляции
:
Коэффициент корреляции равен тогда и только тогда, когда X и Y линейно зависимы:
Если X,Yнезависимые случайные величины, то
Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.
Область применения
Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
Ложная корреляция
Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.
В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.
См. также
Wikimedia Foundation . 2010 .
Смотреть что такое «Корреляционный анализ» в других словарях:
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — см. АНАЛИЗ КОРРЕЛЯЦИОННЫЙ. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (в математической статистике) … Большой Энциклопедический словарь
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — КОРРЕЛЯЦИОННЫЙ АНАЛИЗ, раздел математической статистики, объединяющий практические методы исследования корреляционной зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция (см. КОРРЕЛЯЦИЯ (взаимная связь … Энциклопедический словарь
Корреляционный анализ — (в экономике) [correlation analysis] ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная,… … Экономико-математический словарь
корреляционный анализ — (в психологии) (от лат. correlatio соотношение) статистический метод оценки формы, знака и тесноты связи исследуемых признаков или факторов. При определении формы связи рассматривается ее линейность или нелинейность (т. е. как в среднем… … Большая психологическая энциклопедия
корреляционный анализ — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN correlation analysis … Справочник технического переводчика
корреляционный анализ — koreliacinė analizė statusas T sritis Kūno kultūra ir sportas apibrėžtis Statistikos metodas, kuriuo įvertinami tiriamųjų asmenų, reiškinių požymiai arba veiksnių santykiai. atitikmenys: angl. correlation studies vok. Analyse der Korrelation, f;… … Sporto terminų žodynas
Корреляционный анализ — совокупность основанных на математической теории корреляции (См. Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие… … Большая советская энциклопедия
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ — раздел матем. статистики, объединяющий практич. методы исследования корреляц. зависимости между двумя (или большим числом) случайными признаками или факторами. См. Корреляция … Большой энциклопедический политехнический словарь
Корреляционный анализ — Один из основных методов социолингвистики, целью которого является установление соотношений между языковыми явлениями и социальными параметрами. См. также: Социолингвистическая корреляция, Социолингвистическая переменная … Словарь социолингвистических терминов
Источник
Корреляционный анализ
Корреляционный анализ – раздел математической статистики, исследующий зависимости между двумя или более случайными величинами. Термин «Correlation» означает взаимосвязь, взаимоотношение.
Функциональная зависимость и корреляция
Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью к заболеваниям существует определенная взаимосвязь.
В области физической культуры и спорта можно привести много примеров такой взаимосвязи. Например, от уровня силы во многом зависит результат, показанный спортсменом в таких видах спорта, как тяжелая атлетика, пауэрлифтинг, гиревой спорт, метание диска и толкание ядра и т.д. Результат в беге на 100 м во многом зависит от процента содержания в мышцах спортсменов быстрых мышечных волокон (II типа). Доказано, что у выдающихся спринтеров этот показатель превышает 80%. Чтобы определить, насколько сильна взаимосвязь между переменными (признаками) используется корреляционный анализ.
Две случайные величины X и Y могут быть:
связаны функциональной зависимостью (жестко, как зависимость переменных в математическом анализе);
независимыми;
связаны стохастической (вероятностной зависимостью) при которой изменение одной величины влечет изменение распределения другой.
В качестве меры связи между случайными величинами используется коэффициент корреляции. Коэффициент корреляции для генеральной совокупности обозначается ρ. Однако, как правило, он неизвестен. Поэтому он оценивается по экспериментальным данным, представляющим выборку объема n, полученную при совместном измерении двух переменных (признаков) X и Y. Коэффициент корреляции, определяемый по выборочным данным называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r. Наиболее часто в качестве оценок генерального коэффициента корреляции используется коэффициент корреляции Пирсона (r) и коэффициент корреляции Спирмена (rs).
Коэффициент корреляции Пирсона ( r )
Чтобы правильно применять корреляционный анализ в научных исследованиях, нужно учитывать условия применения этого метода.
Условия, при которых возможен расчет коэффициента корреляции Пирсона:
Экспериментальные данные должны быть представлены в только в интервальной шкале или шкале отношений.
Распределение экспериментальных данных подчиняется нормальному закону.
Предполагается линейная зависимость между случайными величинами X и Y.
Коэффициент корреляции Спирмена ( r S)
При расчете коэффициента корреляции Спирмена требования к исходным данным менее строгие, а именно:
Данные могут быть представлены в порядковой, интервальной шкале или шкале отношений.
Допускается любой закон распределения случайных величин X и Y.
Между случайными величинами X и Y должна существовать монотонно-возрастающая или монотонно-убывающая зависимость.
Свойства оценок коэффициентов корреляции
Рассчитанные коэффициенты корреляции могут принимать значения от -1 до +1.
Если коэффициент корреляции равен: r =+1 и r = -1, это означает, что случайные величины X и Y связаны жесткой линейной зависимостью.
Если r ≠ 0, то чем ближе |r| к единице, тем сильнее линейная зависимость случайных величин X и Y.
Если коэффициент корреляции положительный (r > 0) – это означает, что между случайными величинами X и Y существует положительная корреляция (или другими словами положительная корреляционная зависимость). Примером положительной корреляционной зависимости является увеличение результата прыжка в длину с увеличением силы мышц ног (рис.1А).
Eсли коэффициент корреляции отрицательный (r < 0) – это означает, что между случайными величинами X и Y существует отрицательная корреляция (или другими словами отрицательная корреляционная зависимость). Примером отрицательной корреляционной зависимости является уменьшение результата пробегания 100 м с увеличением силы мышц ног (рис. 1Б)
Если коэффициент корреляции равен нулю (r = 0) – это означает, что корреляции нет; случайные величины X и Y некоррелированы (рис. 1В). Другими словами, это означает, что между случайными величинами X и Y нет взаимосвязи.
Корреляция считается положительной, если график имеет выраженное направление из левого нижнего угла в правый верхний угол и с увеличением значений одной переменной другая также увеличивается;
Корреляция считается отрицательной, если график имеет направление из левого верхнего угла в правый нижний, и с увеличением одной переменной, другая уменьшается;
Корреляция отсутствует, когда у корреляционного облака нет четко выраженного направления, точки рассеиваются далеко от воображаемой прямой и нельзя сказать, что с увеличением одной переменной другая уменьшается или увеличивается.
Коэффициент корреляции между случайными величинами X и Y для генеральной совокупности как правило, неизвестен. Однако его можно оценить, рассчитав выборочный коэффициент корреляции (коэффициент корреляции Пирсона или Спирмена). Но при заменяя генеральную совокупность выборкой при оценке коэффициента корреляции допускается ошибка. Поэтому важно оценить значимость (достоверность) рассчитанного коэффициента корреляции.
Например, в эксперименте участвовало 10 человек. Оценивалась взаимосвязь между результатами в беге на 30 м и 100 м. Получен коэффициент корреляции r = 0,611. Чтобы оценить значимость коэффициента корреляции нужно сравнить его с критическим, величина которого зависит от объема выборки и уровня значимости. Если фактическое значение коэффициента корреляции больше, чем критическое, это означает, что коэффициент корреляции достоверен (значим). В нашем случае критическое значение коэффициента корреляции при n= 10 и α = 0,05 составляет r0,05 =0,632 (в таблице 1 это значение выделено жирным шрифтом). Из этого следует, что рассчитанный коэффициент корреляции статистически недостоверен. Приводить его в своих исследованиях нежелательно.
Таблица 1 — Критические значения коэффициента корреляции Пирсона
n
0,05
0,01
0,001
3
0,9969
0,999877
0,99999877
4
0,950
0,9900
0,9990
5
0,878
0,9597
0,99114
6
0,811
0,9172
0,9741
7
0,754
0,875
0,9509
8
0,707
0,834
0,9244
9
0,666
0,798
0,898
10
0,632
0,765
0,872
20
0,444
0,561
0,679
30
0,361
0,463
0,570
40
0,312
0,402
0,501
50
0,279
0,361
0,451
В итоговой таблице необходимо указать объем выборки, чтобы читающий мог оценить значимость (достоверность) вычисленных коэффициентов корреляции. Иногда в публикациях приводятся только значимые коэффициенты корреляции, а вместо незначимых ставится прочерк. В таблице 2 авторы указали, что объем выборки равен n = 32. Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (В.С.Иванов, 1990). Следовательно, все коэффициенты корреляции достоверны.
Таблица 2 — Значения коэффициентов корреляции между результатами в скоростно-силовых тестах и результатом в толкании ядра с разгоном n=32, спортивный результат группы варьировал от 12,00 м до 20,50. Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (по: Я.Е.Ланка, Ан.А.Шалманов, 1982).
Источник
Понятие и виды корреляционного анализа
К. Пирсон и Дж. Юл разработали корреляционный анализ, который по их мнению должен ответить на вопрос о том, как выбрать с учетом специфики и природы анализируемых переменных подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, и т.д.), решить задачу, как оценить его числовые значения по уже имеющимся выборочным данным. Корреляционный анализ поможет: найти методы проверки того, что полученное числовое значение анализируемого измерителя связи действительно свидетельствует о наличии статистической связи; определить структуру связей между исследуемыми k признаками х 1, х 2,…, сопоставив каждой паре признаков ответ («связь есть» или «связи нет»).
Парный коэффициент корреляции – основной показатель взаимозависимости двух случайных величин, служит мерой линейной статистической зависимости между двумя величинами., он соответствует своему прямому назначению, когда статистическая связь между соответствующими признаками в генеральной совокупности линейна. То же самое относится к частным и множественным коэффициентам корреляции. Парный коэффициент корреляции, характеризует тесноту связи между случайными величинами х и у, определяется по формуле:
Если р = 0, то между величинами х и у линейная связь отсутствует и они называются некоррелированными .Коэффициент корреляции, определяемый по вышеуказанной формуле, относится к генеральной совокупности.
Частный коэффициент корреляции характеризует степень линейной зависимости между двумя величинами, обладает всеми свойствами парного, т.е. изменяется в пределах от -1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство его нулю свидетельствует о линейной независимости этих величин.
Множественный коэффициент корреляции, характеризует степень линейной зависимости между величиной х 1и остальными переменными (х 2, х з), входящими в модель, изменяется в пределах от 0 до 1.
Ординальная (порядковая) переменная помогает упорядочивать статистически исследованные объекты по степени проявления в них анализируемого свойства
Ранговая корреляция – статистическая связь между порядковыми переменными (измерение статистической связи между двумя или несколькими ранжировками одного и того же конечного множества объектов О 1,О 2,…, О п.
Ранжировка – это расположение объектов в порядке убывания степени проявления в них k-го изучаемого свойства. В этом случае x(k) называют рангом i-го объекта по k-му признаку. Раж характеризует порядковое место, которое занимает объект О i, в ряду п объектов.
К. Спирмен в 1904г предложил показатель, который служил для измерения степени тесноты связи между ранжировками
В последствии данный коэффициент был назван ранговым коэффициентом К. Спирмен: