Аналитик

Аналитик – это специалист по анализу информации, который может найти закономерности даже в самых больших и разрозненных потоках данных. Профессия требует сильно развитого аналитического мышления.

Аналитик – это собирательное название профессии, суть которой сводится к сбору большого количества цифровых данных, их анализу и трактовке полученной информации. Что это за данные – зависит уже от специфики работы такого сотрудника. Аналитик может быть специалистом в области финансов, инвестиций, конкретных рыночных сегментов, инженерии, химии, компьютерного программного обеспечения, рекламы, социологии и так далее. Кстати, в 2021 году центр профориентации ПрофГид разработал точный тест на профориентацию. Он сам расскажет вам, какие профессии вам подходят, даст заключение о вашем типе личности и интеллекте.

Краткое описание: кто такой аналитик?

Аналитик – это человек, которого огромные разрозненные потоки информации приводят не в ужас, а в состояние профессионального азарта. Он способен обнаружить среди этих потоков определенные алгоритмы и закономерности, чтобы в итоге получить новое знание, которое можно будет с успехом применять в сфере его работы.

Особенности профессии

Чаще всего вакансия аналитика предполагает, так или иначе, работу с числами – самой подходящей формой представления информации для проведения исследований, анализа, выявления статистических принципов, прогнозирования и формирования планов дальнейшего развития. То, о чем говорят эти числа, может относиться практически к любой области жизни современного общества. Хотя на практике аналитики все же чаще работают в областях, связанных с финансами, поскольку именно они требуют детальнейшего анализа и предельно четких прогнозов, основанных на реальных данных и научной математике, а не чьей-то интуиции.

Ключевые обязанности аналитика сводятся к следующей последовательности действий:

  • Сбор всех данных, необходимых для проведения анализа, и их первичная обработка (она направлена на приведение данных к единой форме, выделение основных признаков, переменных и неизвестных для анализа и прочие подготовительные работы).
  • Определение основных тезисов исследования, выдвижение гипотез.
  • Непосредственно анализ собранной и стандартизированной информации, выполняемый с помощью математических методов и современного программного обеспечения. В результате анализа гипотезы либо подтверждаются, либо опровергаются.
  • Составление прогнозов, планов развития, проектов, методических рекомендаций, основанных на результатах выполненного анализа.
  • Оформление аналитического отчета о результатах анализа, формирование выводов, их презентация работодателю/клиенту.

Например, бизнес-аналитик может работать в штате конкретной компании и изучать ее финансовые процессы, реальные и потенциальные договора с партнерами, конкурентов, чтобы определить ее слабые и сильные места, предложить оптимальные способы оптимизации ее работы, сокращения расходов и повышения прибыли. Финансовый аналитик может специализироваться на особенностях процессов внутреннего или международного рынка. Некоторые аналитики специализируются на биржевой торговле и могут спрогнозировать перспективность тех или иных инвестиций.

Аналитики, работающие в области компьютерных технологий, совершенствуют концепции и методы разработки программного обеспечения, консультируют по вопросам информационной безопасности, помогают внедрять более совершенные алгоритмы на практике.

Плюсы и минусы профессии аналитик

Плюсы

  1. Высокая зарплата.
  2. Востребованность на рынке труда.
  3. Престижная профессия.
  4. Широкие возможности для переквалификации, работы в различных областях экономики.

Минусы

  1. Необходимость в наличии профильного образования и опыта работы для успешного трудоустройства.
  2. Высокий уровень ответственности.
  3. Работа, всегда требующая использования мозговых ресурсов, умственного напряжения.

Важные личные качества

Очевидно, что успешный аналитик должен обладать крайне ярко выраженными способностями к аналитическому мышлению. Также у него должна быть хорошая память, умение долго сохранять концентрацию, усидчивость, внимательность, способности к оперированию большими объемами информации, дедукции, индукции, ответственность, наблюдательность. Коммуникативные способности тоже не будут лишними, как и профессиональная интуиция (хоть аналитик и должен оперировать сугубо доказуемыми понятиями и выводами).

Обучение на аналитика

Аналитик без высшего образования не может претендовать на получение хороших высокооплачиваемых должностей. С другой стороны, таких специалистов «в чистом виде» отечественные вузы не готовят, да и специфика работы может сильно различаться в зависимости от области деятельности. Самые близкие по характеру и смыслу варианты обучения на аналитика – это профили «Экономика» (код 38.03.01) и «Социология» (код 39.03.01). Набор предметов, которые нужно сдавать для поступления, зависит от специальности и вуза и может включать в себя русский язык, математику, обществознание и иностранный язык. Обучение в обоих случаях длится 4 года на очном отделении, 5 лет – на всех остальных.

Источник



Чем на самом деле занимаются аналитики данных и почему они не останутся без работы

Вместе с сервисом онлайн-образования «Яндекс.Практикум» разобрались, кто такие аналитики данных и почему они сейчас нужны многим компаниям. А заодно выяснили, кому будет интересно овладеть этой профессией и с какими сложностями можно столкнуться при обучении.

Что такое большие данные

На уроках математики в школе вы постоянно работали с данными: складывали, умножали, делили в уме или в столбик. Возможно, вы также ведёте семейный бюджет в блокноте или в таблице — вносите информацию и используете простые формулы: находите суммы, разности, средние значения. То есть выполняете обработку данных, причём преимущественно вручную. Когда их мало, справляться с такими задачами сравнительно несложно.

Большие данные — это когда информации действительно много: чёткой границы нет, но обычно речь идёт о гигабайтах, если не о терабайтах. Эти массивы могут поступать сразу из множества источников: интернет‑магазинов и социальных сетей, промышленных систем управления качеством, систем видеонаблюдения, устройств интернета вещей.

Данные отличаются по структуре, бывают упорядоченными и нет. Например, история операций по кредитке упорядочена по времени, а характеристики смартфонов на складе можно хранить без строгого порядка.

Плотность данных также может быть разной: одни системы выполняют измерения каждый час, другие — несколько раз в секунду. Соответственно, и объёмы информации отличаются: от нескольких килобайт до сотен гигабайт.

Работать с большими данными вручную сложно: это долго, дорого и неэффективно. Поэтому для анализа таких массивов используют средства автоматической обработки.

Зачем бизнесу анализировать данные

Представьте, что вы управляете продуктовым магазином. Как узнать, чего хочет покупатель? Спросите его — и услышите, какие товары он приобретает чаще, в какое время обычно ходит за покупками.

Но масса деталей останется за кадром. Например, именно аналитики знают, как на покупки влияет заполненность полок, плохая погода, фоновая музыка.

Все эти и другие данные можно собрать и проанализировать. Это поможет супермаркету расставить товар так, чтобы покупатель как можно дольше оставался в торговом зале и обращал внимание на нужные предложения, и пересмотреть график работы кассиров, чтобы уменьшить очереди на кассах. Узнав больше об интересах своих клиентов, магазин сможет оптимизировать закупки и логистику. В результате выручка увеличится, а расходы сократятся.

Читайте также:  Паустовский анализ произведения для детей

Найти применение большим данным можно в любой сфере:

  • На заводах система компьютерного зрения следит за рабочими. Система заметит, если кто‑то забыл про каску, и напомнит о правилах безопасности.
  • В банках анализ больших данных диктует условия кредитов и депозитов, выявляет хакерские атаки и подозрительные операции.
  • Городами тоже управляют большие данные. Умные светофоры уменьшают пробки, компьютерное зрение ищет преступников в толпе. С аналитиками советуются, прежде чем построить новую дорогу или центр госуслуг, изменить маршрут автобуса.

На основе данных можно построить модели и проверить гипотезы. Модель — это математическое описание любой ситуации, которое помогает предположить будущее. Например, модель прогнозирования спроса в торговой сети предскажет, как будет меняться востребованность отдельных товаров, поможет скорректировать цены и объёмы закупок. Использование математических описаний обеспечивает поддержку принятия решений на каждом шагу: конкретный результат работы с данными — точный прогноз на будущее.

На курсе «Профессия аналитик данных» от «Яндекс.Практикума» вы научитесь получать, готовить и анализировать данные, которые собирают компании. Вы сможете построить и проверить гипотезы, предсказать события, которые определят развитие бизнеса и помогут ему увеличить прибыль.

Освоив язык программирования Python, среду для интерактивных вычислений Jupyter Notebook, SQL‑запросы к базам данных и современные технологии оперирования большими данными, вы соберёте эффектное портфолио из реальных кейсов. С ним вам будет проще найти первую работу — в офисе или удалённо.

Чем работа аналитика данных отличается от data scientist

В простых ситуациях можно обойтись без анализа больших данных и использовать банальную логику. Например, если вы заметили, что покупатели с детьми в магазине часто приобретают определённое печенье, то вы можете просто поставить рядом с ним детский сок и тем самым увеличить продажи.

Но на практике всё обычно куда сложнее. Например, как составить оптимальный пакет услуг мобильного оператора и определить цену, которая будет доступной для абонента и принесёт максимальную выгоду компании?

Аналитик может структурировать и обработать данные о рынке мобильной связи, существующих пакетах и расходах абонентов. Он сформулирует и проверит гипотезы, найдёт закономерности и сделает выводы: предложит конкретный состав пакета и его цену.

Более сложными задачами, а также поиском неочевидных закономерностей в данных занимается уже другой специалист — data scientist. Так, вы можете и не подозревать, что покупки связаны между собой. Или что маршруты автомобилей во вторник и в среду отличаются, поэтому пробки образуются в разных районах — хотя, казалось бы, это обычные будние дни.

Для решения таких задач задействуют машинное обучение и искусственный интеллект. Data scientist выбирает конкретные методы, которые позволяют системе учиться на разрозненных данных, делать логичные выводы и прогнозы.

Какие знания и навыки нужны аналитику данных

Прежде всего, технические (hard skills):

  • Основы математической статистики. За многими методами анализа стоят статистические законы. Для правильных выводов недостаточно одних данных, нужно пользоваться статистикой: отсекать выбросы, правильно считать среднее значение или медиану, проверять статистические гипотезы.
  • Умение создавать программы для анализа данных. Чаще всего в этой области используют язык программирования Python. У него простой и логичный синтаксис, есть немало готовых библиотек — чтобы не изобретать велосипед, а собрать программу из уже существующих функций и блоков.
  • Понимание принципов работы реляционных (табличных) баз данных. Массивы информации чаще всего хранятся в них. Чтобы получить сведения из таких источников, нужно знать язык SQL и уметь составлять на нём запросы к базам данных.

Но и человеческие качества (soft skills) имеют значение. Они определяют, насколько вы эффективны в качестве аналитика данных и комфортно ли вам будет работать на такой должности. Пригодятся:

  • Желание найти корни проблем. Если вы действительно хотите разобраться в причинах событий и явлений, учиться и работать будет легче и интереснее.
  • Умение нестандартно мыслить. Очень странные гипотезы порой находят подтверждение и помогают компаниям заработать миллионы.
  • Смелость. Вы можете сколько угодно сомневаться в своих идеях, но лучше проверить их на данных, чем отправить «в стол», лишь бы коллеги не посчитали вас странным.
  • Навык задавать правильные вопросы, чтобы получить полезную информацию. Это нарабатывается с опытом.

Курс «Профессия аналитик данных» от «Яндекс.Практикума» — возможность освоить востребованную специальность с нуля. Попробуйте бесплатные вводные уроки. Они помогут понять, насколько вам интересен анализ данных, разобраться в профессии на практике и попробовать онлайн‑формат обучения.

С какими сложностями сталкиваются студенты на курсе по анализу данных

Аналитик данных — не самая простая профессия. Чтобы стать хорошим специалистам, придётся приложить немало усилий. К чему стоит быть готовым?

  • Придётся регулярно выделять время на учёбу. Освоить весь материал в сжатые сроки физически невозможно: здесь надо много читать, запоминать, создавать предсказательные модели, писать код, проводить эксперименты и улучшать их результаты.
  • Вы будете постоянно задавать вопросы, и, чтобы получить нужный ответ и не тратить время впустую, необходимо научиться правильно их формулировать.
  • Часть информации предстоит искать самостоятельно. Конечно, в интернете есть всё, а ИТ‑сообщество достаточно отзывчиво, но с нестандартными запросами придётся повозиться.
  • Порой эксперименты с данными завершаются неудачей: ваша модель не подходит для решения задачи, вы получаете совсем не те результаты, которые ожидали. Это нормально: даже опытные аналитики не всегда достигают цели с первого раза. И это вовсе не повод останавливаться.
  • Некоторые темы покажутся совершенно непонятными. Вы можете читать материал снова и снова, но не приблизитесь к сути вопроса. В таких ситуациях помогает переключиться, а позднее вернуться к занятиям — либо попросить помощи у ментора или у других студентов.

Как освоить профессию аналитика данных

Обычно в университетах студенты получают фундаментальные знания, но работодателей интересуют навыки решения практических задач и опыт в нужной области. И если крупные учебные заведения регулярно обновляют программу, рассматривают реальные кейсы и современные инструменты для анализа данных, то вузам поменьше для этого часто не хватает ресурсов. Поэтому студентам приходится самостоятельно искать проекты и задачи, чтобы научиться применять теорию на практике.

Читайте также:  Анализ китайского фондового рынка

Быстрое погружение в профессию и понимание потребностей работодателей даёт почувствовать, какие знания и умения нужны. Формируется привычка самостоятельного поиска решений, примеров, похожих кейсов, нарабатывается опыт, растёт портфолио.

Проверьте, готовы ли вы освоить профессию аналитика данных:

  1. Пройдите вводный курс — поймёте, насколько вам интересен анализ данных.
  2. Прочитайте отзывы людей, которые уже завершили занятия на курсе по этой профессии и трудоустроились.
  3. Изучите программу обучения и задайте вопросы образовательной поддержке курса.
  4. Найдите вакансии в своём городе или предложения удалённой работы, изучите требования к специалистам по анализу данным.
  5. Взвесьте все за и против. Было ли интересно анализировать данные на вводном курсе? А вакансии кажутся привлекательными? Если всё так, похоже, вам подходит эта профессия.

Учёба на курсе «Профессия аналитик данных» от «Яндекс.Практикума» похожа на работу в крупной IT‑компании. Студенты анализируют реальные данные, очищают их от ошибок, обсуждают с заказчиком детали заданий, а с наставником — варианты решений. Будущие аналитики не работают с абстрактными кейсами, а составляют рекомендации для актуальных задач бизнес‑практики. Программа прокачает необходимые hard и soft skills. Все эти навыки оттачиваются в течение 6 месяцев.

В конце курса студенты защищают выпускной проект и ищут работу. В этом помогают HR‑специалисты из «Яндекс.Практикума». Работа над резюме и портфолио, подготовка к собеседованию — всё это входит в учебный курс. Впрочем, некоторым студентам удаётся трудоустроиться ещё до получения диплома.

Источник

Аналитик

Сегодня никто не станет опровергать тот факт, что жизнь современного общества неразрывно связана с огромнейшим потоком информации, весь объем которого полностью воспринять не может ни один человек. И мы бы уже давно утонули в этом информационном море, если бы не представители профессии аналитика, которые взяли на себя труд по обработке всех имеющихся данных.

Сегодня никто не станет опровергать тот факт, что жизнь современного общества неразрывно связана с огромнейшим потоком информации, весь объем которого полностью воспринять не может ни один человек. И мы бы уже давно утонули в этом информационном море, если бы не представители профессии аналитика, которые взяли на себя труд по обработке всех имеющихся данных.

Другими словами, аналитик является именно тем человеком, к которому стекается вся информация, и который умеет с ней работать. Ну а поскольку информация – это тот продукт, который имеет ценность только пока он свежий, аналитики были и будут востребованы везде, где актуальность информации имеет первостепенное значение. Сразу отметим, что аналитика относится к достаточно специфическим сферам деятельности, поэтому работать в данной области могут только те люди, которые обладают определенным набором личностных качеств, навыков и знаний. А вот о том, что же должен уметь аналитик, и в чем заключаются особенности его работы мы и расскажем в этой статье.

Кто такой аналитик?

Аналитик – высококвалифицированный специалист, который проводит аналитические исследования, обобщает полученную информацию в определенной сфере деятельности, в совершенстве владеет различными методами анализа, а также способен прогнозировать процессы и разрабатывать программы развития.

Название профессии произошло от древнегреческого άναλυτικά (искусство анализа), что полностью отображает основную суть работы аналитика. Несмотря на то, что профессию аналитика принято считать относительно «молодой», первые сочинения по аналитике появились еще в 4 веке до нашей эры (Первая и Вторая Аналитика Аристотеля). Однако занимались первые аналитики преимущественно историей и общечеловеческими вопросами.

Современные же аналитики обрабатывают информацию, касающуюся всех сфер жизнедеятельности общества, и имеют дело преимущественно с цифрами. Именно поэтому сегодня существует несколько узких специализаций этой профессии, зависящих от направления деятельности: финансовый аналитик, бизнес-аналитик, инвестиционный аналитик, системный аналитик, веб-аналитик, маркетолог-аналитик и т.д.

Обязанности аналитика представляют собой цепочку последовательных действий:

  • сбор и первичная обработка данных;
  • составление определенных предположений и тезисов;
  • анализ и проверка информации;
  • разработка проектов и методических работ, подкрепленных четкими обоснованиями;
  • формирование выводов и аналитического отчета о проделанной работе.

Другими словами, профессиональные обязанности любого аналитика, независимо от сферы деятельности, направлены на сбор, оценку и анализ информации, с последующей выработкой практических рекомендаций по улучшению работы предприятия или организации с учетом актуальной ситуации на рынке.

Источник

Профессия: аналитик данных

Аналитик — специалист, который занимается обработкой данных и составлением на их основе прогнозов, стратегий, планов и рекомендаций клиентам.

Существует несколько профессий, в названии которых также есть слово «аналитик» — финансовые аналитики, программные аналитики, системные аналитики. Все они занимаются анализом той или иной информации, но не обязательно используют в своей деятельности математику, статистику и языки программирования. Их нужно отличать от отдельной профессии «аналитик данных».

Аналитик данных должен хорошо разбираться в математике, статистике, информатике, компьютерных науках, бизнесе и экономике.

Данные, которые обрабатывает аналитик, зависят от сферы деятельности, которой он занимается. Например, аналитик в области рекламы определяет целевую аудиторию для рекламных кампаний: составляет алгоритм, с помощью которого ищет в базах данных информацию о потенциальных клиентах, анализирует рекламные стратегии с точки зрения отклика, оценивает показатели эффективности кампаний.

В чём заключается моя работа

Я работаю ведущим аналитиком в рекламном подразделении таргетированных смс-рассылок мобильного оператора. По соображениям конфиденциальности назвать компанию я не могу, она входит в так называемую «большую тройку». Моё подразделение занимается рассылкой рекламы абонентам, сегментируя их по опредёленным социально-демографическим, поведенческим и другим признакам. Аналитик занимается тем, что из всей абонентской базы выбирает абонентов, которые отвечают этим признакам, чтобы рекламодатель рассылал рекламу именно тем людям, которых она может заинтересовать.

Например, к нам приходит клиент, директор стоматологии, и заказывает рекламную кампанию. Аналитик и клиент вместе определяют набор признаков, по которым абоненты могли бы заинтересоваться этой конкретной стоматологией — проживание в определённом районе, обращение за стоматологическими услугами в недалёком прошлом и так далее. Составив список этих признаков, аналитик направляет запросы в базу данных, чтобы реклама была отправлена релевантным абонентам. Для формирования запросов используется специальный язык программирования SQL, предназначенный для работы с базами данных.

Читайте также:  Пцр анализ суть метода

Такая реклама называется таргетированной, от английского слова target — цель. Основная задача аналитика — правильно определить эту цель. Чем точнее определён круг признаков и правильнее составлен запрос, тем успешней рекламная кампания.

По результатам кампании аналитики собирают и анализируют данные о её эффективности: смотрят, как много абонентов откликнулись на рекламу— , то есть позвонили по указанным телефонам, обратились в эту стоматологию;, и анализируют, от чего зависит эффективность рекламы, когда она срабатывает, а когда нет. Это похоже на настоящее научное исследование.

Как я стала аналитиком

Меня с детства интересовали математика и программирование, работа с данными, таблицами, поиск и анализ закономерностей. Работа аналитика включает все эти аспекты.

Я закончила НИУ ВШЭ по направлению, связанному с маркетингом. На факультете нам преподавали математику, статистику, прогнозирование, эконометрику, и эти предметы мне нравились больше всего. Кроме того, я занималась программированием на дополнительных курсах.

После окончания вуза я стала работать в PR, но вскоре поняла, что эта сфера деятельности мне не нравится. Мне было неинтересно, работала я через силу, заставляя себя приходить в офис. Поэтому я решила сменить направление. В вузе я узнала, как работает статистика, какие математические инструменты используются для анализа данных, познакомилась с языком программирования SQL. С этими навыками в резюме я решила посмотреть вакансии аналитика и вскоре нашла мою нынешнюю работу. Поначалу мне поручали и другие задачи, но постепенно аналитика стала моим основным занятием.

За три года я стала ведущим аналитиком— руководителем подразделения. В мои обязанности входит не только составление запросов в базы данных, но и распределение задач внутри моей команды, взаимодействие с заказчиками рекламных кампаний или аккаунт-менеджерами, которые ведут этого рекламодателя.

Где учат на аналитиков

Профессию аналитика получают на направлениях, связанных с информатикой, математикой, программированием. Эти направления есть практически во всех ведущих вузах страны.

Список вузов от редакции:
МГУ им. М.В. Ломоносова — факультет вычислительной математики и кибернетики, направление «Прикладная математика и информатика».

СПБГУ — направления «Математика и компьютерные науки», «Математика, алгоритмы и анализ данных», «Прикладная математика и информатика», «Прикладная математика, фундаментальная информатика и программирование», «Программирование и информационные технологии», «Системный анализ и прикладные компьютерные технологии».

НИУ ВШЭ — направления «Экономика и статистика», «Бизнес-информатика», «Прикладная математика и информатика».

Национальный исследовательский университет МЭИ — Институт автоматики и вычислительной техники, направление «Прикладная математика и информатика».

Национальный исследовательский технологический университет МИСиС — факультет «Информатика и вычислительная техника».

Московский политехнический университет — факультет информационных технологий, направление «Прикладная информатика (большие и открытые данные)», «Прикладная математика и информатика», «Бизнес-информатика (IT-менеджмент)».

Московский технический университет связи и информатики (МТУСИ) — факультет экономики и управления (ФЭУ), направление «Прикладная информатика».

Финансовая академия при правительстве России — направления «Прикладная математика и информатика», «Бизнес-информатика», «Прикладная информатика».

Какие качества нужны, чтобы успешно работать аналитиком

1. Любовь к тишине и одиночеству

Работа аналитика по большей части заключается в том, чтобы взаимодействовать с компьютером, а не с людьми. Аналитик, если он не руководитель подразделения, мало общается даже с коллегами, не говоря уже о клиентах. Он не проводит встреч, его рабочий день проходит у монитора за обработкой данных. Есть люди, которым обязательно нужно общение — им такая работа не подойдёт!

2. Развитый логико-математический интеллект

Важно, чтобы человеку нравилось оперировать статистическими данными, составлять графики и таблицы, видеть закономерности, структурировать информацию, выделять главное, отбрасывать второстепенное.

3. Терпение

Аналитик — профессия не творческая. Каждый день аналитику приходится заниматься одним и тем же: сбором, анализом, оценкой данных. Эта работа очень похожа на главное увлечение моего детства — собирание пазлов. Мне доставляло удовольствие взять набор непонятных разрозненных деталей и часами собирать из них что-то целостное, разумное, имеющее смысл. Так же работают и аналитики.

4.Точность и скрупулёзность

Аналитик по большей части имеет дело с точными категориями: данными, цифрами, алгоритмами. Составляя запросы, нужно совершать как можно меньше ошибок и максимально точно подбирать аудиторию.

5. Внимательность

Аналитик должен учитывать все факторы, которые могут повлиять на результат анализа, не упустить ни одной важной детали, иначе на выходе он получит неверные данные и сделает ошибочные выводы.

Карьера, график работы, зарплата

Карьера. Внутри компании можно из простого аналитика стать тимлидом, руководителем подразделения и развиваться в направлении менеджмента — разрабатывать и курировать собственные продукты, придумывать стратегии их развития.

Можно совершенствовать навыки программирования, повышать свою квалификацию как аналитика данных, переходить в более крупные компании, на более востребованное и престижное направление, заниматься дата-моделированием, большими данными (big data), делать прогнозы и предсказания.

График работы. Аналитики в офисе работают по обычному графику с 9:00 до 18.00 или с 10:00 до 19:00. Иногда приходится задерживаться на работе, но это зависит от нагрузки конкретного аналитика.

Аналитик может работать и удалённо: консультировать заказчиков, которым необходим анализ данных, писать приложения. Всё, что ему для этого нужно — компьютер или ноутбук, выход в интернет и доступ к базам данных.

Зарплата. Зарплата аналитика зависит от его опыта и квалификации, от компании, в которой он работает. В начале карьерного пути я получала 45 тысяч рублей, сейчас зарабатываю больше.

Средняя зарплата аналитика в Москве — 70 тысяч рублей. Начинающий аналитик сразу после окончания вуза может получать от 25 тысяч рублей.

Аналитик данных в будущем

Современный бизнес во многом строится на анализе данных о клиентах, продажах, эффективности рекламных стратегий, поэтому профессия аналитика сейчас очень востребована и останется такой в ближайшие десятилетия. Перспективные направления: работа с большими данными, дата-моделирование, экономическое прогнозирование. Кроме того, умение работать с большим количеством информации (анализировать, структурировать её, делать выводы) востребовано не только в экономике и финансах, но в любой другой сфере деятельности.

Я считаю, что профессию надо выбирать по зову сердца, ориентируясь на то, что нравится делать. Какой бы перспективной ни была профессия, в ней невозможно достичь высот, если не получаешь от неё удовольствия.

Хотите получать новые статьи во «ВКонтакте»? Подпишитесь на рассылку полезных статей

Источник